Circuit Complexity in $U(1)$ Gauge Theory (2108.08208v1)
Abstract: We study circuit complexity for a free vector field of a $U(1)$ gauge theory in Coulomb gauge, and Gaussian states. We introduce a quantum circuit model with Gaussian states, including reference and target states. Using the Nielsen's geometric approach, the complexity then can be found as the shortest geodesic in the space of states. This geodesic is based on the notion of geodesic distance on the Lie group of Bogoliubov transformations equipped with a right-invariant metric. We use the framework of the covariance matrix to compute circuit complexity between Gaussian states. We apply this framework to the free vector field in general dimensions where we compute the circuit complexity of the ground state of the Hamiltonian.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.