Papers
Topics
Authors
Recent
2000 character limit reached

BOBCAT: Bilevel Optimization-Based Computerized Adaptive Testing (2108.07386v1)

Published 17 Aug 2021 in cs.LG and cs.AI

Abstract: Computerized adaptive testing (CAT) refers to a form of tests that are personalized to every student/test taker. CAT methods adaptively select the next most informative question/item for each student given their responses to previous questions, effectively reducing test length. Existing CAT methods use item response theory (IRT) models to relate student ability to their responses to questions and static question selection algorithms designed to reduce the ability estimation error as quickly as possible; therefore, these algorithms cannot improve by learning from large-scale student response data. In this paper, we propose BOBCAT, a Bilevel Optimization-Based framework for CAT to directly learn a data-driven question selection algorithm from training data. BOBCAT is agnostic to the underlying student response model and is computationally efficient during the adaptive testing process. Through extensive experiments on five real-world student response datasets, we show that BOBCAT outperforms existing CAT methods (sometimes significantly) at reducing test length.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.