Papers
Topics
Authors
Recent
2000 character limit reached

Semi-transitivity of directed split graphs generated by morphisms (2108.05483v1)

Published 12 Aug 2021 in math.CO

Abstract: A directed graph is semi-transitive if and only if it is acyclic and for any directed path $u_1\rightarrow u_2\rightarrow \cdots \rightarrow u_t$, $t \geq 2$, either there is no edge from $u_1$ to $u_t$ or all edges $u_i\rightarrow u_j$ exist for $1 \leq i < j \leq t$. In this paper, we study semi-transitivity of families of directed split graphs obtained by iterations of morphisms applied to the adjacency matrices and giving in the limit infinite directed split graphs. A split graph is a graph in which the vertices can be partitioned into a clique and an independent set. We fully classify semi-transitive infinite directed split graphs when a morphism in question can involve any $n\times m$ matrices over ${-1,0,1}$ with a single natural condition.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.