A simplified second-order Gaussian Poincaré inequality in discrete setting with applications (2108.05216v1)
Abstract: In this paper, a simplified second-order Gaussian Poincar\'e inequality for normal approximation of functionals over infinitely many Rademacher random variables is derived. It is based on a new bound for the Kolmogorov distance between a general Rademacher functional and a Gaussian random variable, which is established by means of the discrete Malliavin-Stein method and is of independent interest. As an application, the number of vertices with prescribed degree and the subgraph counting statistic in the Erd\"os-R\'enyi random graph are discussed. The number of vertices of fixed degree is also studied for percolation on the Hamming hypercube. Moreover, the number of isolated faces in the Linial-Meshulam-Wallach random $\kappa$-complex and infinite weighted 2-runs are treated.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.