Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Finding the disjointness of stabilizer codes is NP-complete (2108.04738v1)

Published 10 Aug 2021 in quant-ph

Abstract: The disjointness of a stabilizer code is a quantity used to constrain the level of the logical Clifford hierarchy attainable by transversal gates and constant-depth quantum circuits. We show that for any positive integer constant $c$, the problem of calculating the $c$-disjointness, or even approximating it to within a constant multiplicative factor, is NP-complete. We provide bounds on the disjointness for various code families, including the CSS codes, concatenated codes and hypergraph product codes. We also describe numerical methods of finding the disjointness, which can be readily used to rule out the existence of any transversal gate implementing some non-Clifford logical operation in small stabilizer codes. Our results indicate that finding fault-tolerant logical gates for generic quantum error-correcting codes is a computationally challenging task.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.