Papers
Topics
Authors
Recent
2000 character limit reached

Weighted asymmetric least squares regression with fixed-effects

Published 10 Aug 2021 in econ.EM | (2108.04737v1)

Abstract: The fixed-effects model estimates the regressor effects on the mean of the response, which is inadequate to summarize the variable relationships in the presence of heteroscedasticity. In this paper, we adapt the asymmetric least squares (expectile) regression to the fixed-effects model and propose a new model: expectile regression with fixed-effects $(\ERFE).$ The $\ERFE$ model applies the within transformation strategy to concentrate out the incidental parameter and estimates the regressor effects on the expectiles of the response distribution. The $\ERFE$ model captures the data heteroscedasticity and eliminates any bias resulting from the correlation between the regressors and the omitted factors. We derive the asymptotic properties of the $\ERFE$ estimators and suggest robust estimators of its covariance matrix. Our simulations show that the $\ERFE$ estimator is unbiased and outperforms its competitors. Our real data analysis shows its ability to capture data heteroscedasticity (see our R package, \url{github.com/AmBarry/erfe}).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.