Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Weighted asymmetric least squares regression with fixed-effects (2108.04737v1)

Published 10 Aug 2021 in econ.EM

Abstract: The fixed-effects model estimates the regressor effects on the mean of the response, which is inadequate to summarize the variable relationships in the presence of heteroscedasticity. In this paper, we adapt the asymmetric least squares (expectile) regression to the fixed-effects model and propose a new model: expectile regression with fixed-effects $(\ERFE).$ The $\ERFE$ model applies the within transformation strategy to concentrate out the incidental parameter and estimates the regressor effects on the expectiles of the response distribution. The $\ERFE$ model captures the data heteroscedasticity and eliminates any bias resulting from the correlation between the regressors and the omitted factors. We derive the asymptotic properties of the $\ERFE$ estimators and suggest robust estimators of its covariance matrix. Our simulations show that the $\ERFE$ estimator is unbiased and outperforms its competitors. Our real data analysis shows its ability to capture data heteroscedasticity (see our R package, \url{github.com/AmBarry/erfe}).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.