Papers
Topics
Authors
Recent
Search
2000 character limit reached

2-Local and local derivations on Jordan matrix rings over commutative involutive rings

Published 25 Jul 2021 in math.RA and math.OA | (2108.03993v2)

Abstract: In the present paper we prove that every 2-local inner derivation on the Jordan ring of self-adjoint matrices over a commutative involutive ring is a derivation. We also apply our technique to various Jordan algebras of infinite dimensional self-adjoint matrix-valued maps on a set and prove that every 2-local spatial derivation on such algebras is a spatial derivation. It is also proved that every local spatial derivation on the same Jordan algebras is a derivation.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.