Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Categorized Reflection Removal Dataset with Diverse Real-world Scenes (2108.03380v1)

Published 7 Aug 2021 in cs.CV

Abstract: Due to the lack of a large-scale reflection removal dataset with diverse real-world scenes, many existing reflection removal methods are trained on synthetic data plus a small amount of real-world data, which makes it difficult to evaluate the strengths or weaknesses of different reflection removal methods thoroughly. Furthermore, existing real-world benchmarks and datasets do not categorize image data based on the types and appearances of reflection (e.g., smoothness, intensity), making it hard to analyze reflection removal methods. Hence, we construct a new reflection removal dataset that is categorized, diverse, and real-world (CDR). A pipeline based on RAW data is used to capture perfectly aligned input images and transmission images. The dataset is constructed using diverse glass types under various environments to ensure diversity. By analyzing several reflection removal methods and conducting extensive experiments on our dataset, we show that state-of-the-art reflection removal methods generally perform well on blurry reflection but fail in obtaining satisfying performance on other types of real-world reflection. We believe our dataset can help develop novel methods to remove real-world reflection better. Our dataset is available at https://alexzhao-hugga.github.io/Real-World-Reflection-Removal/.

Citations (13)

Summary

We haven't generated a summary for this paper yet.