Incremental Feature Learning For Infinite Data (2108.02932v1)
Abstract: This study addresses the actual behavior of the credit-card fraud detection environment where financial transactions containing sensitive data must not be amassed in an enormous amount to conduct learning. We introduce a new adaptive learning approach that adjusts frequently and efficiently to new transaction chunks; each chunk is discarded after each incremental training step. Our approach combines transfer learning and incremental feature learning. The former improves the feature relevancy for subsequent chunks, and the latter, a new paradigm, increases accuracy during training by determining the optimal network architecture dynamically for each new chunk. The architectures of past incremental approaches are fixed; thus, the accuracy may not improve with new chunks. We show the effectiveness and superiority of our approach experimentally on an actual fraud dataset.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.