Papers
Topics
Authors
Recent
2000 character limit reached

Discussion on "Bayesian Regression Tree Models for Causal Inference: Regularization, Confounding, and Heterogeneous Effects" by Hahn, Murray and Carvalho (2108.02836v1)

Published 5 Aug 2021 in stat.ME and stat.OT

Abstract: Hahn et al. (2020) offers an extensive study to explicate and evaluate the performance of the BCF model in different settings and provides a detailed discussion about its utility in causal inference. It is a welcomed addition to the causal machine learning literature. I will emphasize the contribution of the BCF model to the field of causal inference through discussions on two topics: 1) the difference between the PS in the BCF model and the Bayesian PS in a Bayesian updating approach, 2) an alternative exposition of the role of the PS in outcome modeling based methods for the estimation of causal effects. I will conclude with comments on avenues for future research involving BCF that will be important and much needed in the era of Big data.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.