Papers
Topics
Authors
Recent
2000 character limit reached

Automatic Rail Component Detection Based on AttnConv-Net

Published 5 Aug 2021 in cs.CV | (2108.02423v2)

Abstract: The automatic detection of major rail components using railway images is beneficial to ensure the rail transport safety. In this paper, we propose an attention-powered deep convolutional network (AttnConv-net) to detect multiple rail components including the rail, clips, and bolts. The proposed method consists of a deep convolutional neural network (DCNN) as the backbone, cascading attention blocks (CAB), and two feed forward networks (FFN). Two types of positional embedding are applied to enrich information in latent features extracted from the backbone. Based on processed latent features, the CAB aims to learn the local context of rail components including their categories and component boundaries. Final categories and bounding boxes are generated via two FFN implemented in parallel. To enhance the detection of small components, various data augmentation methods are employed in the training process. The effectiveness of the proposed AttnConv-net is validated with one real dataset and another synthesized dataset. Compared with classic convolutional neural network based methods, our proposed method simplifies the detection pipeline by eliminating the need of prior- and post-processing, which offers a new speed-quality solution to enable faster and more accurate image-based rail component detections

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.