Papers
Topics
Authors
Recent
2000 character limit reached

Boosting Few-shot Semantic Segmentation with Transformers (2108.02266v1)

Published 4 Aug 2021 in cs.CV

Abstract: Due to the fact that fully supervised semantic segmentation methods require sufficient fully-labeled data to work well and can not generalize to unseen classes, few-shot segmentation has attracted lots of research attention. Previous arts extract features from support and query images, which are processed jointly before making predictions on query images. The whole process is based on convolutional neural networks (CNN), leading to the problem that only local information is used. In this paper, we propose a TRansformer-based Few-shot Semantic segmentation method (TRFS). Specifically, our model consists of two modules: Global Enhancement Module (GEM) and Local Enhancement Module (LEM). GEM adopts transformer blocks to exploit global information, while LEM utilizes conventional convolutions to exploit local information, across query and support features. Both GEM and LEM are complementary, helping to learn better feature representations for segmenting query images. Extensive experiments on PASCAL-5i and COCO datasets show that our approach achieves new state-of-the-art performance, demonstrating its effectiveness.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.