Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adversarial Attacks Against Deep Reinforcement Learning Framework in Internet of Vehicles

Published 2 Aug 2021 in cs.LG, cs.AI, and cs.CR | (2108.00833v2)

Abstract: Machine learning (ML) has made incredible impacts and transformations in a wide range of vehicular applications. As the use of ML in Internet of Vehicles (IoV) continues to advance, adversarial threats and their impact have become an important subject of research worth exploring. In this paper, we focus on Sybil-based adversarial threats against a deep reinforcement learning (DRL)-assisted IoV framework and more specifically, DRL-based dynamic service placement in IoV. We carry out an experimental study with real vehicle trajectories to analyze the impact on service delay and resource congestion under different attack scenarios for the DRL-based dynamic service placement application. We further investigate the impact of the proportion of Sybil-attacked vehicles in the network. The results demonstrate that the performance is significantly affected by Sybil-based data poisoning attacks when compared to adversary-free healthy network scenario.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.