Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Towards Robust Object Detection: Bayesian RetinaNet for Homoscedastic Aleatoric Uncertainty Modeling (2108.00784v2)

Published 2 Aug 2021 in cs.CV and cs.LG

Abstract: According to recent studies, commonly used computer vision datasets contain about 4% of label errors. For example, the COCO dataset is known for its high level of noise in data labels, which limits its use for training robust neural deep architectures in a real-world scenario. To model such a noise, in this paper we have proposed the homoscedastic aleatoric uncertainty estimation, and present a series of novel loss functions to address the problem of image object detection at scale. Specifically, the proposed functions are based on Bayesian inference and we have incorporated them into the common community-adopted object detection deep learning architecture RetinaNet. We have also shown that modeling of homoscedastic aleatoric uncertainty using our novel functions allows to increase the model interpretability and to improve the object detection performance being evaluated on the COCO dataset.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.