Papers
Topics
Authors
Recent
Search
2000 character limit reached

Circular planar electrical networks, Split systems, and Phylogenetic networks

Published 1 Aug 2021 in math.CO | (2108.00550v1)

Abstract: We study a new invariant of circular planar electrical networks, well known to phylogeneticists: the circular split system. We use our invariant to answer some open questions about levels of complexity of networks and their related Kalmanson metrics. The key to our analysis is the realization that certain matrices arising from weighted split systems are studied in another guise: the Kron reductions of Laplacian matrices of planar electrical networks. Specifically we show that a response matrix of a circular planar electrical network corresponds to a unique resistance metric obeying the Kalmanson condition, and thus a unique weighted circular split system. Our results allow interchange of methods: phylogenetic reconstruction using theorems about electrical networks, and circuit reconstruction using phylogenetic techniques.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.