Papers
Topics
Authors
Recent
Search
2000 character limit reached

Certified Defense via Latent Space Randomized Smoothing with Orthogonal Encoders

Published 1 Aug 2021 in cs.LG and cs.CR | (2108.00491v1)

Abstract: Randomized Smoothing (RS), being one of few provable defenses, has been showing great effectiveness and scalability in terms of defending against $\ell_2$-norm adversarial perturbations. However, the cost of MC sampling needed in RS for evaluation is high and computationally expensive. To address this issue, we investigate the possibility of performing randomized smoothing and establishing the robust certification in the latent space of a network, so that the overall dimensionality of tensors involved in computation could be drastically reduced. To this end, we propose Latent Space Randomized Smoothing. Another important aspect is that we use orthogonal modules, whose Lipschitz property is known for free by design, to propagate the certified radius estimated in the latent space back to the input space, providing valid certifiable regions for the test samples in the input space. Experiments on CIFAR10 and ImageNet show that our method achieves competitive certified robustness but with a significant improvement of efficiency during the test phase.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.