Papers
Topics
Authors
Recent
2000 character limit reached

Localization and delocalization properties in quasi-periodically perturbed Kicked Harper and Harper models (2107.14650v2)

Published 30 Jul 2021 in cond-mat.dis-nn and quant-ph

Abstract: We numerically study the single particle localization and delocalization phenomena of an initially localized wave packet in the kicked Harper model (KHM) and Harper model subjected to quasi-periodic perturbation composed of $M-$modes. Both models are localized in the monochromatically perturbed case $M=1$. KHM shows localization-delocalization transition (LDT) above $M\geq2$ as increase of the perturbation strength $\eps$. In contrast, in a time-continuous Harper model with the perturbation, it is confirmed that the localization persists for $M=2$ and the LDT occurs for $M\geq 3$. Furthermore, we investigate the diffusive property of the delocalized wave packet in the KHM and Harper model for $\eps$ above the critical strength $\eps_c$ ($\eps>\eps_c$) comparing with other type systems without localization, which takes place a ballistic to diffusive transition in the wave packet dynamics as the increase of $\eps$.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.