Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Hyperbolic Diffusion in Flux Reconstruction: Optimisation through Kernel Fusion within Tensor-Product Elements (2107.14027v2)

Published 22 Jul 2021 in cs.MS and physics.comp-ph

Abstract: Novel methods are presented in this initial study for the fusion of GPU kernels in the artificial compressibility method (ACM), using tensor product elements with constant Jacobians and flux reconstruction. This is made possible through the hyperbolisation of the diffusion terms, which eliminates the expensive algorithmic steps needed to form the viscous stresses. Two fusion approaches are presented, which offer differing levels of parallelism. This is found to be necessary for the change in workload as the order of accuracy of the elements is increased. Several further optimisations of these approaches are demonstrated, including a generation time memory manager which maximises resource usage. The fused kernels are able to achieve 3-4 times speedup, which compares favourably with a theoretical maximum speedup of 4. In three dimensional test cases, the generated fused kernels are found to reduce total runtime by ${\sim}25\%$, and, when compared to the standard ACM formulation, simulations demonstrate that a speedup of $2.3$ times can be achieved.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.