Papers
Topics
Authors
Recent
Search
2000 character limit reached

Orbital Stability of the sum of Smooth solitons in the Degasperis-Procesi Equation

Published 29 Jul 2021 in math.AP | (2107.13768v2)

Abstract: The Degasperis-Procesi (DP) equation is an integrable Camassa-Holm-type model as an asymptotic approximation for the unidirectional propagation of shallow water waves. This work is to establish the $L2\cap L\infty$ orbital stability of a wave train containing $N$ smooth solitons which are well separated. The main difficulties stem from the subtle nonlocal structure of the DP equation. One consequence is that the energy space of the DE equation based on the conserved quantity induced by the translation symmetry is only equivalent to the $L2$-norm, which by itself can not bound the higher-order nonlinear terms in the Lagrangian. Our remedy is to introduce \textit{a priori } estimates based on certain smooth initial conditions. Moreover, another consequence is that the nonlocal structure of the DP equation significantly complicates the verification of the monotonicity of local momentum and the positive definiteness of a refined quadratic form of the orthogonalized perturbation.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.