Papers
Topics
Authors
Recent
2000 character limit reached

Robustness and sensitivity analyses for rough Volterra stochastic volatility models (2107.12462v2)

Published 26 Jul 2021 in q-fin.PR and stat.ME

Abstract: In this paper, we analyze the robustness and sensitivity of various continuous-time rough Volterra stochastic volatility models in relation to the process of market calibration. Model robustness is examined from two perspectives: the sensitivity of option price estimates and the sensitivity of parameter estimates to changes in the option data structure. The following sensitivity analysis consists of statistical tests to determine whether a given studied model is sensitive to changes in the option data structure based on the distribution of parameter estimates. Empirical study is performed on a data set consisting of Apple Inc. equity options traded on four different days in April and May 2015. In particular, the results for RFSV, rBergomi and $\alpha$RFSV models are provided and compared to the results for Heston, Bates, and AFSVJD models.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.