Papers
Topics
Authors
Recent
Search
2000 character limit reached

Selective MPC: Distributed Computation of Differentially Private Key-Value Statistics

Published 26 Jul 2021 in cs.CR | (2107.12407v2)

Abstract: Key-value data is a naturally occurring data type that has not been thoroughly investigated in the local trust model. Existing local differentially private (LDP) solutions for computing statistics over key-value data suffer from the inherent accuracy limitations of each user adding their own noise. Multi-party computation (MPC) maintains better accuracy than LDP and similarly does not require a trusted central party. However, naively applying MPC to key-value data results in prohibitively expensive computation costs. In this work, we present selective multi-party computation, a novel approach to distributed computation that leverages DP leakage to efficiently and accurately compute statistics over key-value data. By providing each party with a view of a random subset of the data, we can capture subtractive noise. We prove that our protocol satisfies pure DP and is provably secure in the combined DP/MPC model. Our empirical evaluation demonstrates that we can compute statistics over 10,000 keys in 20 seconds and can scale up to 30 servers while obtaining results for a single key in under a second.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.