Analytic and algebraic conditions for bifurcations of homoclinic orbits II: Reversible systems (2107.12077v1)
Abstract: Following Part~I, we consider a class of reversible systems and study bifurcations of homoclinic orbits to hyperbolic saddle equilibria. Here we concentrate on the case in which homoclinic orbits are symmetric, so that only one control parameter is enough to treat their bifurcations, as in Hamiltonian systems. First, we modify and extend arguments of Part~I to show in a form applicable to general systems discussed there that if such bifurcations occur in four-dimensional systems, then variational equations around the homoclinic orbits are integrable in the meaning of differential Galois theory. We next extend the Melnikov method of Part~I to reversible systems and obtain theorems on saddle-node, transcritical and pitchfork bifurcations of symmetric homoclinic orbits. We illustrate our theory for a four-dimensional system, and demonstrate the theoretical results by numerical ones.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.