Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Loops of Infinite Order and Toric Foliations (2107.12004v1)

Published 26 Jul 2021 in math.DS

Abstract: In 2005 Dullin et al. proved that the non-zero vector of Maslov indices is an eigenvector with eigenvalue 1 of the monodromy matrices of an integrable Hamiltonian system. We take a close look at the geometry behind this result and extend it to a more general context. We construct a bundle morphism defined on the lattice bundle of an (general) integrable system, which can be seen as a generalization of the vector of Maslov indices. The non-triviality of this bundle morphism implies the existence of common eigenvectors with eigenvalue 1 of the monodromy matrices, and gives rise to a corank 1 toric foliation refining the original one induced by the integrable system. Furthermore, we show that in the case where the system has 2 degrees of freedom, this implies the global existence of a free S{1} action.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube