Papers
Topics
Authors
Recent
2000 character limit reached

Preliminary Steps Towards Federated Sentiment Classification (2107.11956v2)

Published 26 Jul 2021 in cs.CL and cs.LG

Abstract: Automatically mining sentiment tendency contained in natural language is a fundamental research to some artificial intelligent applications, where solutions alternate with challenges. Transfer learning and multi-task learning techniques have been leveraged to mitigate the supervision sparsity and collaborate multiple heterogeneous domains correspondingly. Recent years, the sensitive nature of users' private data raises another challenge for sentiment classification, i.e., data privacy protection. In this paper, we resort to federated learning for multiple domain sentiment classification under the constraint that the corpora must be stored on decentralized devices. In view of the heterogeneous semantics across multiple parties and the peculiarities of word embedding, we pertinently provide corresponding solutions. First, we propose a Knowledge Transfer Enhanced Private-Shared (KTEPS) framework for better model aggregation and personalization in federated sentiment classification. Second, we propose KTEPS$\star$ with the consideration of the rich semantic and huge embedding size properties of word vectors, utilizing Projection-based Dimension Reduction (PDR) methods for privacy protection and efficient transmission simultaneously. We propose two federated sentiment classification scenes based on public benchmarks, and verify the superiorities of our proposed methods with abundant experimental investigations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.