Papers
Topics
Authors
Recent
2000 character limit reached

Horizon saddle connections and Morse-Smale dynamics of dilation surfaces (2107.11745v2)

Published 25 Jul 2021 in math.DS and math.GT

Abstract: Dilation surfaces are generalizations of translation surfaces where the transition maps of the atlas are translations and homotheties with a positive ratio. In contrast with translation surfaces, the directional flow on dilation surfaces may contain trajectories accumulating on a limit cycle. Such a limit cycle is called hyperbolic because it induces a nontrivial homothety. It has been conjectured that a dilation surface with no actual hyperbolic closed geodesic is in fact a translation surface. Assuming that a dilation surface contains a horizon saddle connection, we prove that the directions of its hyperbolic closed geodesics form a dense subset of $\mathbb{S}{1}$. We also prove that a dilation surface satisfies the latter property if and only if its directional flow is Morse-Smale in an open dense subset of $\mathbb{S}{1}$.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.