Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Fast Temporal Decomposition Procedure for Long-horizon Nonlinear Dynamic Programming (2107.11560v3)

Published 24 Jul 2021 in math.OC and math.DS

Abstract: We propose a fast temporal decomposition procedure for solving long-horizon nonlinear dynamic programs. The core of the procedure is sequential quadratic programming (SQP) that utilizes a differentiable exact augmented Lagrangian as the merit function. Within each SQP iteration, we approximately solve the Newton system using an overlapping temporal decomposition strategy. We show that the approximate search direction is still a descent direction of the augmented Lagrangian, provided the overlap size and penalty parameters are suitably chosen, which allows us to establish the global convergence. Moreover, we show that a unit stepsize is accepted locally for the approximate search direction, and further establish a uniform, local linear convergence over stages. This local convergence rate matches the rate of the recent Schwarz scheme by Na et al., 2022. However, the Schwarz scheme has to solve nonlinear subproblems to optimality in each iteration, while we only perform a single Newton step instead. Numerical experiments validate our theories and demonstrate the superiority of our method.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube