Papers
Topics
Authors
Recent
Search
2000 character limit reached

A General Convex Integration Scheme for the Isentropic Compressible Euler Equations

Published 22 Jul 2021 in math.AP | (2107.10618v1)

Abstract: We prove via convex integration a result that allows to pass from a so-called subsolution of the isentropic Euler equations (in space dimension at least $2$) to exact weak solutions. The method is closely related to the incompressible scheme established by De Lellis--Sz\'ekelyhidi, in particular we only perturb momenta and not densities. Surprisingly, though, this turns out not to be a restriction, as can be seen from our simple characterization of the $\Lambda$-convex hull of the constitutive set. An important application of our scheme will be exhibited in forthcoming work by Gallenm\"uller--Wiedemann.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.