On some information-theoretic aspects of non-linear statistical inverse problems
Abstract: Results by van der Vaart (1991) from semi-parametric statistics about the existence of a non-zero Fisher information are reviewed in an infinite-dimensional non-linear Gaussian regression setting. Information-theoretically optimal inference on aspects of the unknown parameter is possible if and only if the adjoint of the linearisation of the regression map satisfies a certain range condition. It is shown that this range condition may fail in a commonly studied elliptic inverse problem with a divergence form equation, and that a large class of smooth linear functionals of the conductivity parameter cannot be estimated efficiently in this case. In particular, Gaussian `Bernstein von Mises'-type approximations for Bayesian posterior distributions do not hold in this setting.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.