Papers
Topics
Authors
Recent
2000 character limit reached

Generalized maximum likelihood estimation of the mean of parameters of mixtures, with applications to sampling

Published 20 Jul 2021 in math.ST and stat.TH | (2107.09296v2)

Abstract: Let $f(y|\theta), \; \theta \in \Omega$ be a parametric family, $\eta(\theta)$ a given function, and $G$ an unknown mixing distribution. It is desired to estimate $E_G (\eta(\theta))\equiv \eta_G$ based on independent observations $Y_1,...,Y_n$, where $Y_i \sim f(y|\theta_i)$, and $\theta_i \sim G$ are iid. We explore the Generalized Maximum Likelihood Estimators (GMLE) for this problem. Some basic properties and representations of those estimators are shown. In particular we suggest a new perspective, of the weak convergence result by Kiefer and Wolfowitz (1956), with implications to a corresponding setup in which $\theta_1,...,\theta_n$ are {\it fixed} parameters. We also relate the above problem, of estimating $\eta_G$, to non-parametric empirical Bayes estimation under a squared loss. Applications of GMLE to sampling problems are presented. The performance of the GMLE is demonstrated both in simulations and through a real data example.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.