On the distribution of the Hodge locus
Abstract: Given a polarizable $\mathbb{Z}$-variation of Hodge structures $\mathbb{V}$ over a complex smooth quasi-projective base $S$, a classical result of Cattani, Deligne and Kaplan says that its Hodge locus (i.e. the locus where exceptional Hodge tensors appear) is a countable union of irreducible algebraic subvarieties of $S$, called the special subvarieties for $\mathbb{V}$. Our main result in this paper is that, if the level of $\mathbb{V}$ is at least $3$, this Hodge locus is in fact a finite union of such special subvarieties (hence is algebraic), at least if we restrict ourselves to the Hodge locus factorwise of positive period dimension. For instance the Hodge locus of positive period dimension of the universal family of degree $d$ smooth hypersurfaces in $\mathbf{P}{n+1}_\mathbb{C}$, $n\geq 3, d\geq 5$ and $(n,d)\neq (4,5)$, is algebraic. On the other hand we prove that in level $1$ or $2$, the Hodge locus is analytically dense in $S{an}$ as soon as it contains one typical special subvariety. These results follow from a complete elucidation of the distribution in $S$ of the special subvarieties in terms of typical/atypical intersections, with the exception of the atypical special subvarieties of zero period dimension.
- Y. André. Mumford-Tate groups of mixed Hodge structures and the theorem of the fixed part. Compositio Math., 82(1):1–24, 1992.
- Arithmeticity, superrigidity and totally geodesic submanifolds of complex hyperbolic manifolds. Invent. Math., 233(1):169–222, 2023.
- Compactification of arithmetic quotients of bounded symmetric domains. Ann. of Math. (2), 84:442–528, 1966.
- o-minimal GAGA and a conjecture of Griffiths. Invent. Math., 2022.
- Tame topology of arithmetic quotients and algebraicity of Hodge loci. J. Am. Math. Soc., 33(4):917–939, 2020.
- B. Bakker and J. Tsimerman. The Ax–Schanuel conjecture for variations of Hodge structures. Invent. Math., 217(1):77–94, 2019.
- On the Geometric Zilber-Pink Theorem and the Lawrence-Venkatesh method. arXiv e-prints. To appear in Expo. Math. (a special volume in memory of Bas Edixhoven), page arXiv:2112.13040, Dec. 2021.
- G. Baldi and E. Ullmo. Special subvarieties of non-arithmetic ball quotients and Hodge theory. Annals of Mathematics, 197(1):159 – 220, 2023.
- A. Beauville. Le groupe de monodromie des familles universelles d’hypersurfaces et d’intersections complètes. In Complex analysis and algebraic geometry (Göttingen, 1985), volume 1194 of Lecture Notes in Math., pages 8–18. Springer, Berlin, 1986.
- A differential approach to the Ax-Schanuel, I. arXiv e-prints, page arXiv:2102.03384, Feb. 2021.
- A. Borel. Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem. J. Differ. Geom., 6:543–560, 1972.
- A one parameter family of Calabi-Yau manifolds with attractor points of rank two. Journal of High Energy Physics, 2020(10):202, Oct. 2020.
- J. A. Carlson. Bounds of the dimension of variations of Hodge structure. Trans. Am. Math. Soc., 294:45–64, 1986.
- J. A. Carlson and R. Donagi. Hypersurface variations are maximal. I. Invent. Math., 89:371–374, 1987.
- On the locus of Hodge classes. J. Amer. Math. Soc., 8(2):483–506, 1995.
- C.-L. Chai. Density of members with extra Hodge cycles in a family of Hodge structures. Asian J. Math., 2(3):405–418, 1998.
- K. Chung Tak Chiu. Ax-Schanuel for variations of mixed Hodge structures. arXiv e-prints, page arXiv:2101.10968, Jan. 2021.
- E. Colombo and G. P. Pirola. Some density results for curves with non-simple jacobians. Math. Ann., 288(1):161–178, 1990.
- C. Daw and J. Ren. Applications of the hyperbolic Ax-Schanuel conjecture. Compos. Math., 154(9):1843–1888, 2018.
- A. J. de Jong. Beyond the André-Oort conjecture. 6 pages note, communicated to the second author in June 2021, 2004.
- P. Deligne. Théorie de Hodge. II. Inst. Hautes Études Sci. Publ. Math., 40:5–57, 1971.
- P. Deligne. La conjecture de Weil. I. Publ. Math., Inst. Hautes Étud. Sci., 43:273–307, 1973.
- P. Deligne. La conjecture de Weil. II. Publ. Math., Inst. Hautes Étud. Sci., 52:137–252, 1980.
- Open problems in algebraic geometry. Bull. Sci. Math., 125(1):1–22, 2001.
- G. Faltings. Arithmetic varieties and rigidity. In Seminar on number theory, Paris 1982–83 (Paris, 1982/1983), volume 51 of Progr. Math., pages 63–77. Birkhäuser Boston, Boston, MA, 1984.
- Z. Gao and B. Klingler. The Ax-Schanuel conjecture for variations of mixed Hodge structures. arXiv e-prints (Published online in Mathematische Annalen), page arXiv:2101.10938, Jan. 2021.
- Mumford-Tate groups and domains, volume 183 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2012. Their geometry and arithmetic.
- M. L. Green. Infinitesimal methods in Hodge theory. In Algebraic cycles and Hodge theory. Lectures given at the 2nd session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Torino, Italy, June 21-29, 1993, pages 1–92. Berlin: Springer-Verlag, 1994.
- P. A. Griffiths. On the periods of certain rational integrals. I, II. Ann. Math. (2), 90:460–495, 496–541, 1969.
- P. A. Griffiths. Periods of integrals on algebraic manifolds. III: Some global differential-geometric properties of the period mapping. Publ. Math., Inst. Hautes Étud. Sci., 38:125–180, 1970.
- P. Habegger and J. Pila. O-minimality and certain atypical intersections. Ann. Sci. Éc. Norm. Supér. (4), 49(4):813–858, 2016.
- E. Izadi. Density and completeness of subvarieties of moduli spaces of curves or abelian varieties. Math. Ann., 310(2):221–233, 1998.
- Y. Kawamata. On Bloch’s conjecture. Invent. Math., 57:97–100, 1980.
- B. Klingler. Hodge loci and atypical intersections: conjectures, 2017. To appear in the book Motives and Complex Multiplication.
- B. Klingler and A. Otwinowska. On the closure of the Hodge locus of positive period dimension. Invent. Math., 225(3):857–883, 2021.
- Bi-algebraic geometry and the André-Oort conjecture. In Algebraic geometry: Salt Lake City 2015, volume 97 of Proc. Sympos. Pure Math., pages 319–359. Amer. Math. Soc., Providence, RI, 2018.
- B. Kostant. Root systems for Levi factors and Borel-de Siebenthal theory. In Symmetry and spaces. In Honor of Gerry Schwarz on the occasion of his 60th birthday, pages 129–152. Basel: Birkhäuser, 2010.
- V. Koziarz and J. Maubon. Finiteness of totally geodesic exceptional divisors in Hermitian locally symmetric spaces. Bull. Soc. Math. Fr., 146(4):613–631, 2018.
- B. Lawrence and A. Venkatesh. Diophantine problems and p𝑝pitalic_p-adic period mappings. Invent. Math., 221(3):893–999, 2020.
- Ax-Schanuel for Shimura varieties. Ann. of Math. (2), 189(3):945–978, 2019.
- M. Möller and D. Toledo. Bounded negativity of self-intersection numbers of Shimura curves in Shimura surfaces. Algebra Number Theory, 9(4):897–912, 2015.
- B. Moonen. Families of motives and the Mumford-Tate conjecture. Milan J. Math. , 85:257–307, 2017.
- B. Moonen and F. Oort. The Torelli locus and special subvarieties. In Handbook of moduli. Volume II, pages 549–594. Somerville, MA: International Press; Beijing: Higher Education Press, 2013.
- G. Moore. Arithmetic and Attractors. arXiv e-prints, pages hep–th/9807087, July 1998.
- G. W. Moore. Les Houches Lectures on Strings and Arithmetic. arXiv e-prints, pages hep–th/0401049, Jan. 2004.
- D. Mumford. A note of Shimura’s paper: Discontinuous groups and Abelian varieties. Math. Ann., 181:345–351, 1969.
- F. Oort. Some questions in algebraic geometry. In Open problems in arithmetic algebraic geometry. Based on the presentations at the conference ‘Arithmetic and geometry of abelian varieties’, 1995. With appendices by Frans Oort, pages 263–283. Somerville, MA: International Press; Beijing: Higher Education Press, 2019.
- J. Pila and T. Scanlon. Effective transcendental Zilber-Pink for variations of Hodge structures. arXiv e-prints, page arXiv:2105.05845, May 2021.
- J. Pila and J. Tsimerman. Ax-Lindemann for 𝒜gsubscript𝒜𝑔\mathcal{A}_{g}caligraphic_A start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT. Ann. Math. (2), 179(2):659–681, 2014.
- J. Pila and U. Zannier. Rational points in periodic analytic sets and the Manin-Mumford conjecture. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl., 19(2):149–162, 2008.
- R. Richard and E. Ullmo. Equidistribution de sous-variétés spéciales et o-minimalité: André-Oort géométrique, with an appendix with J. Chen. arXiv e-prints. To appear in Annales de l’Institut Fourier, page arXiv:2104.04439, Apr. 2021.
- C. Robles. Schubert varieties as variations of Hodge structure. Sel. Math., New Ser., 20(3):719–768, 2014.
- W. Schmid. Variation of Hodge structure: The singularities of the period mapping. Invent. Math., 22:211–319, 1973.
- C. T. Simpson. Higgs bundles and local systems. Inst. Hautes Études Sci. Publ. Math., 75:5–95, 1992.
- S. Tayou. On the equidistribution of some Hodge loci. J. Reine Angew. Math., 762:167–194, 2020.
- S. Tayou and N. Tholozan. Equidistribution of Hodge loci. II. Compos. Math., 159(1):1–52, 2023.
- D. Toledo. Non-existence of certain closed complex geodesics in the moduli space of curves. Pac. J. Math., 129(1):187–192, 1987.
- J. Tsimerman. Brauer-Siegel for arithmetic tori and lower bounds for Galois orbits of special points. J. Am. Math. Soc., 25(4):1091–1117, 2012.
- J. Tsimerman. The André-Oort conjecture for 𝒜gsubscript𝒜𝑔\mathcal{A}_{g}caligraphic_A start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT. Ann. of Math. (2), 187(2):379–390, 2018.
- E. Ullmo. Applications du théorème d’Ax-Lindemann hyperbolique. Compos. Math., 150(2):175–190, 2014.
- L. van den Dries. Tame topology and o-minimal structures, volume 248 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1998.
- C. Voisin. Théorie de Hodge et géométrie algébrique complexe, volume 10 of Cours Spécialisés [Specialized Courses]. Société Mathématique de France, Paris, 2002.
- A. Weil. Abelian varieties and the Hodge ring. Collected Papers, III:421–429, 1979.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.