Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 21 tok/s
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 479 tok/s Pro
Kimi K2 179 tok/s Pro
2000 character limit reached

Joint Dermatological Lesion Classification and Confidence Modeling with Uncertainty Estimation (2107.08770v1)

Published 19 Jul 2021 in cs.CV

Abstract: Deep learning has played a major role in the interpretation of dermoscopic images for detecting skin defects and abnormalities. However, current deep learning solutions for dermatological lesion analysis are typically limited in providing probabilistic predictions which highlights the importance of concerning uncertainties. This concept of uncertainty can provide a confidence level for each feature which prevents overconfident predictions with poor generalization on unseen data. In this paper, we propose an overall framework that jointly considers dermatological classification and uncertainty estimation together. The estimated confidence of each feature to avoid uncertain feature and undesirable shift, which are caused by environmental difference of input image, in the latent space is pooled from confidence network. Our qualitative results show that modeling uncertainties not only helps to quantify model confidence for each prediction but also helps classification layers to focus on confident features, therefore, improving the accuracy for dermatological lesion classification. We demonstrate the potential of the proposed approach in two state-of-the-art dermoscopic datasets (ISIC 2018 and ISIC 2019).

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube