Papers
Topics
Authors
Recent
Search
2000 character limit reached

Several methods of analysis for cardinality constrained bin packing

Published 19 Jul 2021 in cs.DS, cs.DM, math.CO, and math.OC | (2107.08725v1)

Abstract: We consider a known variant of bin packing called {\it cardinality constrained bin packing}, also called {\it bin packing with cardinality constraints} (BPCC). In this problem, there is a parameter k\geq 2, and items of rational sizes in [0,1] are to be packed into bins, such that no bin has more than k items or total size larger than 1. The goal is to minimize the number of bins. A recently introduced concept, called the price of clustering, deals with inputs that are presented in a way that they are split into clusters. Thus, an item has two attributes which are its size and its cluster. The goal is to measure the relation between an optimal solution that cannot combine items of different clusters into bins, and an optimal solution that can combine items of different clusters arbitrarily. Usually the number of clusters may be large, while clusters are relatively small, though not trivially small. Such problems are related to greedy bin packing algorithms, and to batched bin packing, which is similar to the price of clustering, but there is a constant number of large clusters. We analyze the price of clustering for BPCC, including the parametric case with bounded item sizes. We discuss several greedy algorithms for this problem that were not studied in the past, and comment on batched bin packing.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.