Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Linear subspaces of minimal codimension in hypersurfaces (2107.08080v3)

Published 16 Jul 2021 in math.AG and math.AC

Abstract: Let $k$ be a perfect field and let $X\subset {\mathbb P}N$ be a hypersurface of degree $d$ defined over $k$ and containing a linear subspace $L$ defined over an algebraic closure $\overline{k}$ with $\mathrm{codim}{{\mathbb P}N}L=r$. We show that $X$ contains a linear subspace $L_0$ defined over $k$ with $\mathrm{codim}{{\mathbb P}N}L\le dr$. We conjecture that the intersection of all linear subspaces (over $\overline{k}$) of minimal codimension $r$ contained in $X$, has codimension bounded above only in terms of $r$ and $d$. We prove this when either $d\le 3$ or $r\le 2$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.