Divide and Conquer for Combinatorial Optimization and Distributed Quantum Computation (2107.07532v3)
Abstract: Scaling the size of monolithic quantum computer systems is a difficult task. As the number of qubits within a device increases, a number of factors contribute to decreases in yield and performance. To meet this challenge, distributed architectures composed of many networked quantum computers have been proposed as a viable path to scalability. Such systems will need algorithms and compilers that are tailored to their distributed architectures. In this work we introduce the Quantum Divide and Conquer Algorithm (QDCA), a hybrid variational approach to mapping large combinatorial optimization problems onto distributed quantum architectures. This is achieved through the combined use of graph partitioning and quantum circuit cutting. The QDCA, an example of application-compiler co-design, alters the structure of the variational ansatz to tame the exponential compilation overhead incurred by quantum circuit cutting. The result of this cross-layer co-design is a highly flexible algorithm which can be tuned to the amount of classical or quantum computational resources that are available, and can be applied to both near- and long-term distributed quantum architectures. We simulate the QDCA on instances of the Maximum Independent Set problem and find that it is able to outperform similar classical algorithms. We also evaluate an 8-qubit QDCA ansatz on a superconducting quantum computer and show that circuit cutting can help to mitigate the effects of noise. Our work demonstrates how many small-scale quantum computers can work together to solve problems $85\%$ larger than their own qubit count, motivating the development and potential of large-scale distributed quantum computing.
- P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Proceedings 35th annual symposium on foundations of computer science. Ieee, 1994, pp. 124–134.
- S. Lloyd, “Universal quantum simulators,” Science, vol. 273, no. 5278, pp. 1073–1078, 1996.
- M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer, “Elucidating reaction mechanisms on quantum computers,” Proceedings of the national academy of sciences, vol. 114, no. 29, pp. 7555–7560, 2017.
- E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.
- J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, pp. 195–202, 2017.
- C. Gidney and M. Ekerå, “How to factor 2048 bit rsa integers in 8 hours using 20 million noisy qubits,” Quantum, vol. 5, p. 433, 2021.
- J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, 2018.
- T. Tomesh, P. Gokhale, V. Omole, G. S. Ravi, K. N. Smith, J. Viszlai, X.-C. Wu, N. Hardavellas, M. R. Martonosi, and F. T. Chong, “Supermarq: A scalable quantum benchmark suite,” in 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2022, pp. 587–603.
- J. Chow, O. Dial, and J. Gambetta, “Ibm quantum breaks the 100‑qubit processor barrier,” Nov 2021. [Online]. Available: https://research.ibm.com/blog/127-qubit-quantum-processor-eagle
- J. Gambetta, “Quantum-centric supercomputing: The next wave of computing,” Nov 2022. [Online]. Available: https://research.ibm.com/blog/next-wave-quantum-centric-supercomputing
- P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Physical review A, vol. 52, no. 4, p. R2493, 1995.
- A. G. Fowler, A. M. Stephens, and P. Groszkowski, “High-threshold universal quantum computation on the surface code,” Physical Review A, vol. 80, no. 5, p. 052312, 2009.
- Y. Ding, P. Gokhale, S. F. Lin, R. Rines, T. Propson, and F. T. Chong, “Systematic crosstalk mitigation for superconducting qubits via frequency-aware compilation,” in 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2020, pp. 201–214.
- J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A. V. Gorshkov, Z.-X. Gong, and C. Monroe, “Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator,” Nature, vol. 551, no. 7682, pp. 601–604, 2017.
- P. H. Leung and K. R. Brown, “Entangling an arbitrary pair of qubits in a long ion crystal,” Physical Review A, vol. 98, no. 3, p. 032318, 2018.
- K. N. Smith, G. S. Ravi, J. M. Baker, and F. T. Chong, “Scaling superconducting quantum computers with chiplet architectures,” in 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 2022, pp. 1092–1109.
- J. Cirac, A. Ekert, S. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Physical Review A, vol. 59, no. 6, p. 4249, 1999.
- R. Van Meter, K. Nemoto, and W. Munro, “Communication links for distributed quantum computation,” IEEE Transactions on Computers, vol. 56, no. 12, pp. 1643–1653, 2007.
- L. Gyongyosi and S. Imre, “Scalable distributed gate-model quantum computers,” Scientific Reports, vol. 11, no. 1, p. 5172, 2021.
- A. Gold, J. Paquette, A. Stockklauser, M. J. Reagor, M. S. Alam, A. Bestwick, N. Didier, A. Nersisyan, F. Oruc, A. Razavi et al., “Entanglement across separate silicon dies in a modular superconducting qubit device,” npj Quantum Information, vol. 7, no. 1, pp. 1–10, 2021.
- H. Yan, Y. Zhong, H.-S. Chang, A. Bienfait, M.-H. Chou, C. R. Conner, É. Dumur, J. Grebel, R. G. Povey, and A. N. Cleland, “Entanglement purification and protection in a superconducting quantum network,” Physical Review Letters, vol. 128, no. 8, p. 080504, 2022.
- T. Peng, A. W. Harrow, M. Ozols, and X. Wu, “Simulating large quantum circuits on a small quantum computer,” Physical Review Letters, vol. 125, no. 15, p. 150504, 2020.
- W. Tang, T. Tomesh, M. Suchara, J. Larson, and M. Martonosi, “Cutqc: using small quantum computers for large quantum circuit evaluations,” in Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, 2021, pp. 473–486.
- M. A. Perlin, Z. H. Saleem, M. Suchara, and J. C. Osborn, “Quantum circuit cutting with maximum-likelihood tomography,” npj Quantum Information, vol. 7, no. 1, pp. 1–8, 2021.
- C. Chevalier and F. Pellegrini, “Pt-scotch: A tool for efficient parallel graph ordering,” Parallel computing, vol. 34, no. 6-8, pp. 318–331, 2008.
- N.-S. Woo and J. Kim, “An efficient method of partitioning circuits for multiple-fpga implementation.” in 30th ACM/IEEE Design Automation Conference. IEEE, 1993, pp. 202–207.
- M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio et al., “Variational quantum algorithms,” Nature Reviews Physics, vol. 3, no. 9, pp. 625–644, 2021.
- T. Tomesh and M. Martonosi, “Quantum co-design,” IEEE Micro, 2021.
- R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of computer computations. Springer, 1972, pp. 85–103.
- R. E. Tarjan and A. E. Trojanowski, “Finding a maximum independent set,” SIAM Journal on Computing, vol. 6, no. 3, pp. 537–546, 1977.
- Z. H. Saleem, T. Tomesh, B. Tariq, and M. Suchara, “Approaches to constrained quantum approximate optimization,” arXiv preprint arXiv:2010.06660, 2021.
- S. Hadfield, “Quantum algorithms for scientific computing and approximate optimization,” arXiv preprint arXiv:1805.03265, 2018.
- S. Hadfield, Z. Wang, B. O’Gorman, E. G. Rieffel, D. Venturelli, and R. Biswas, “From the quantum approximate optimization algorithm to a quantum alternating operator ansatz,” Algorithms, vol. 12, no. 2, p. 34, 2019.
- Z. H. Saleem, “Max-independent set and the quantum alternating operator ansatz,” International Journal of Quantum Information, vol. 18, no. 04, p. 2050011, 2020.
- R. H. Dicke, “Coherence in spontaneous radiation processes,” Physical review, vol. 93, no. 1, p. 99, 1954.
- R. Herrman, P. C. Lotshaw, J. Ostrowski, T. S. Humble, and G. Siopsis, “Multi-angle quantum approximate optimization algorithm,” Scientific Reports, vol. 12, no. 1, pp. 1–10, 2022.
- N. Slate, E. Matwiejew, S. Marsh, and J. Wang, “Quantum walk-based portfolio optimisation,” Quantum, vol. 5, p. 513, 2021.
- P. Murali, D. M. Debroy, K. R. Brown, and M. Martonosi, “Architecting noisy intermediate-scale trapped ion quantum computers,” in 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). IEEE, 2020, pp. 529–542.
- A. Cross, “The ibm q experience and qiskit open-source quantum computing software,” in APS March meeting abstracts, vol. 2018, 2018, pp. L58–003.
- Amazon Web Services, “Amazon Braket,” https://aws.amazon.com/braket/, 2020.
- M. Kohda, R. Imai, K. Kanno, K. Mitarai, W. Mizukami, and Y. O. Nakagawa, “Quantum expectation value estimation by computational basis sampling,” arXiv preprint arXiv:2112.07416, 2021.
- P. Gokhale, O. Angiuli, Y. Ding, K. Gui, T. Tomesh, M. Suchara, M. Martonosi, and F. T. Chong, “O(N3)𝑂superscript𝑁3O(N^{3})italic_O ( italic_N start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) Measurement Cost for Variational Quantum Eigensolver on Molecular Hamiltonians,” IEEE Transactions on Quantum Engineering, vol. 1, pp. 1–24, 2020.
- T. Tomesh, “dqva-and-circuit-cutting,” https://github.com/teaguetomesh/dqva-and-circuit-cutting, April 2023.
- B. W. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning graphs,” The Bell system technical journal, vol. 49, no. 2, pp. 291–307, 1970.
- G. Karypis and V. Kumar, “Metis: A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices,” 1997.
- Y.-H. Tang, O. Selvitopi, D. T. Popovici, and A. Buluç, “A high-throughput solver for marginalized graph kernels on gpu,” in 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2020, pp. 728–738.
- D. T. Chen, E. H. Hansen, X. Li, V. Kulkarni, V. Chaudhary, B. Ren, Q. Guan, S. Kuppannagari, J. Liu, and S. Xu, “Efficient quantum circuit cutting by neglecting basis elements,” arXiv preprint arXiv:2304.04093, 2023.
- A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dynamics, and function using networkx,” Los Alamos National Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.
- A. Condon and R. M. Karp, “Algorithms for graph partitioning on the planted partition model,” Random Structures & Algorithms, vol. 18, no. 2, pp. 116–140, 2001.
- P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020.
- R. Boppana and M. M. Halldórsson, “Approximating maximum independent sets by excluding subgraphs,” BIT Numerical Mathematics, vol. 32, no. 2, pp. 180–196, 1992.
- R. Davis, “So What Is Qiskit Runtime, Anyway?” Apr 2022. [Online]. Available: https://medium.com/qiskit/so-what-is-qiskit-runtime-anyway-c78aecf3742
- J. Li, M. Alam, and S. Ghosh, “Large-scale quantum approximate optimization via divide-and-conquer,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022.
- L. Ntaimo and S. Sen, “The million-variable “march” for stochastic combinatorial optimization,” Journal of Global Optimization, vol. 32, no. 3, pp. 385–400, 2005.
- J. Guo, E. Zulkoski, R. Olaechea, D. Rayside, K. Czarnecki, S. Apel, and J. M. Atlee, “Scaling exact multi-objective combinatorial optimization by parallelization,” in Proceedings of the 29th ACM/IEEE international conference on Automated software engineering, 2014, pp. 409–420.
- T. Tomesh, Z. H. Saleem, and M. Suchara, “Quantum local search with the quantum alternating operator ansatz,” Quantum, vol. 6, p. 781, 2022.
- T. Graham, Y. Song, J. Scott, C. Poole, L. Phuttitarn, K. Jooya, P. Eichler, X. Jiang, A. Marra, B. Grinkemeyer et al., “Multi-qubit entanglement and algorithms on a neutral-atom quantum computer,” Nature, vol. 604, no. 7906, pp. 457–462, 2022.
- O. Katz, L. Feng, A. Risinger, C. Monroe, and M. Cetina, “Demonstration of three-and four-body interactions between trapped-ion spins,” arXiv preprint arXiv:2209.05691, 2022.
- T. Tomesh, N. Allen, and Z. Saleem, “Quantum-classical tradeoffs and multi-controlled quantum gate decompositions in variational algorithms,” arXiv preprint arXiv:2210.04378, 2022.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.