Papers
Topics
Authors
Recent
Search
2000 character limit reached

Strongly Hyperbolic Unit Disk Graphs

Published 12 Jul 2021 in cs.DS | (2107.05518v3)

Abstract: The class of Euclidean unit disk graphs is one of the most fundamental and well-studied graph classes with underlying geometry. In this paper, we identify this class as a special case in the broader class of hyperbolic unit disk graphs and introduce strongly hyperbolic unit disk graphs as a natural counterpart to the Euclidean variant. In contrast to the grid-like structures exhibited by Euclidean unit disk graphs, strongly hyperbolic networks feature hierarchical structures, which are also observed in complex real-world networks. We investigate basic properties of strongly hyperbolic unit disk graphs, including adjacencies and the formation of cliques, and utilize the derived insights to demonstrate that the class is useful for the development and analysis of graph algorithms. Specifically, we develop a simple greedy routing scheme and analyze its performance on strongly hyperbolic unit disk graphs in order to prove that routing can be performed more efficiently on such networks than in general.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.