Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Extrapolation Estimation for Parametric Regression with Normal Measurement Error (2107.04923v1)

Published 10 Jul 2021 in stat.ME

Abstract: For the general parametric regression models with covariates contaminated with normal measurement errors, this paper proposes an accelerated version of the classical simulation extrapolation algorithm to estimate the unknown parameters in the regression function. By applying the conditional expectation directly to the target function, the proposed algorithm successfully removes the simulation step, by generating an estimation equation either for immediate use or for extrapolating, thus significantly reducing the computational time. Large sample properties of the resulting estimator, including the consistency and the asymptotic normality, are thoroughly discussed. Potential wide applications of the proposed estimation procedure are illustrated by examples, simulation studies, as well as a real data analysis.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.