Papers
Topics
Authors
Recent
Search
2000 character limit reached

A test for normality and independence based on characteristic function

Published 10 Jul 2021 in math.ST, stat.ME, and stat.TH | (2107.04845v1)

Abstract: In this article we prove a generalization of the Ejsmont characterization of the multivariate normal distribution. Based on it, we propose a new test for independence and normality. The test uses an integral of the squared modulus of the difference between the product of empirical characteristic functions and some constant. Special attention is given to the case of testing univariate normality in which we derive the test statistic explicitly in terms of Bessel function, and the case of testing bivariate normality and independence. The tests show quality performance in comparison to some popular powerful competitors.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.