Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Classifying sections of del Pezzo fibrations, II (2107.04723v1)

Published 10 Jul 2021 in math.AG

Abstract: Let $X$ be a del Pezzo surface over the function field of a complex curve. We study the behavior of rational points on $X$ leading to bounds on the counting function in Geometric Manin's Conjecture. A key tool is the Movable Bend and Break Lemma which yields an inductive approach to classifying relatively free sections for a del Pezzo fibration over a curve. Using this lemma we prove Geometric Manin's Conjecture for certain split del Pezzo surfaces of degree $\geq 2$ admitting a birational morphism to $\mathbb P2$ over the ground field.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.