Papers
Topics
Authors
Recent
2000 character limit reached

Improved Language Identification Through Cross-Lingual Self-Supervised Learning (2107.04082v4)

Published 8 Jul 2021 in cs.CL, cs.SD, and eess.AS

Abstract: Language identification greatly impacts the success of downstream tasks such as automatic speech recognition. Recently, self-supervised speech representations learned by wav2vec 2.0 have been shown to be very effective for a range of speech tasks. We extend previous self-supervised work on language identification by experimenting with pre-trained models which were learned on real-world unconstrained speech in multiple languages and not just on English. We show that models pre-trained on many languages perform better and enable language identification systems that require very little labeled data to perform well. Results on a 26 languages setup show that with only 10 minutes of labeled data per language, a cross-lingually pre-trained model can achieve over 89.2% accuracy.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.