Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tate-Hochschild cohomology rings for eventually periodic Gorenstein algebras (2107.03326v1)

Published 7 Jul 2021 in math.RT

Abstract: Tate-Hochschild cohomology of an algebra is a generalization of ordinary Hochschild cohomology, which is defined on positive and negative degrees and has a ring structure. Our purpose of this paper is to study the eventual periodicity of an algebra by using the Tate-Hochschild cohomology ring. First, we deal with eventually periodic algebras and show that they are not necessarily Gorenstein algebras. Secondly, we characterize the eventual periodicity of a Gorenstein algebra as the existence of an invertible homogeneous element of the Tate-Hochschild cohomology ring of the algebra, which is our main result. Finally, we use tensor algebras to establish a way of constructing eventually periodic Gorenstein algebras.

Summary

We haven't generated a summary for this paper yet.