Tate-Hochschild cohomology rings for eventually periodic Gorenstein algebras
Abstract: Tate-Hochschild cohomology of an algebra is a generalization of ordinary Hochschild cohomology, which is defined on positive and negative degrees and has a ring structure. Our purpose of this paper is to study the eventual periodicity of an algebra by using the Tate-Hochschild cohomology ring. First, we deal with eventually periodic algebras and show that they are not necessarily Gorenstein algebras. Secondly, we characterize the eventual periodicity of a Gorenstein algebra as the existence of an invertible homogeneous element of the Tate-Hochschild cohomology ring of the algebra, which is our main result. Finally, we use tensor algebras to establish a way of constructing eventually periodic Gorenstein algebras.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.