Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

PoseRN: A 2D pose refinement network for bias-free multi-view 3D human pose estimation (2107.03000v1)

Published 7 Jul 2021 in cs.CV

Abstract: We propose a new 2D pose refinement network that learns to predict the human bias in the estimated 2D pose. There are biases in 2D pose estimations that are due to differences between annotations of 2D joint locations based on annotators' perception and those defined by motion capture (MoCap) systems. These biases are crafted into publicly available 2D pose datasets and cannot be removed with existing error reduction approaches. Our proposed pose refinement network allows us to efficiently remove the human bias in the estimated 2D poses and achieve highly accurate multi-view 3D human pose estimation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.