The proportion of derangements characterizes the symmetric and alternating groups
Abstract: Let $G$ be a subgroup of the symmetric group $S_n$. If the proportion of fixed-point-free elements in $G$ (or a coset) equals the proportion of fixed-point-free elements in $S_n$, then $G=S_n$. The analogue for $A_n$ holds if $n \ge 7$. We give an application to monodromy groups.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.