Papers
Topics
Authors
Recent
2000 character limit reached

Viscos Flows: Variational Schur Conditional Sampling With Normalizing Flows

Published 6 Jul 2021 in stat.ML and cs.LG | (2107.02474v3)

Abstract: We present a method for conditional sampling for pre-trained normalizing flows when only part of an observation is available. We derive a lower bound to the conditioning variable log-probability using Schur complement properties in the spirit of Gaussian conditional sampling. Our derivation relies on partitioning flow's domain in such a way that the flow restrictions to subdomains remain bijective, which is crucial for the Schur complement application. Simulation from the variational conditional flow then amends to solving an equality constraint. Our contribution is three-fold: a) we provide detailed insights on the choice of variational distributions; b) we discuss how to partition the input space of the flow to preserve bijectivity property; c) we propose a set of methods to optimise the variational distribution. Our numerical results indicate that our sampling method can be successfully applied to invertible residual networks for inference and classification.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.