Papers
Topics
Authors
Recent
Search
2000 character limit reached

Fluctuation bounds for ergodic averages of amenable groups

Published 6 Jul 2021 in math.DS | (2107.02403v1)

Abstract: We study fluctuations of ergodic averages generated by actions of amenable groups. In the setting of an abstract ergodic theorem for locally compact second countable amenable groups acting on uniformly convex Banach spaces, we deduce a highly uniform bound on the number of fluctuations of the ergodic average for a class of F{\o}lner sequences satisfying an analogue of Lindenstrauss's temperedness condition. Equivalently, we deduce a uniform bound on the number of fluctuations over long distances for arbitrary F{\o}lner sequences. As a corollary, these results imply associated bounds for a continuous action of an amenable group on a $\sigma$-finite $L{p}$ space with $p\in(1,\infty)$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.