Papers
Topics
Authors
Recent
2000 character limit reached

Certifiably Robust Interpretation via Renyi Differential Privacy (2107.01561v1)

Published 4 Jul 2021 in cs.LG and stat.ML

Abstract: Motivated by the recent discovery that the interpretation maps of CNNs could easily be manipulated by adversarial attacks against network interpretability, we study the problem of interpretation robustness from a new perspective of \Renyi differential privacy (RDP). The advantages of our Renyi-Robust-Smooth (RDP-based interpretation method) are three-folds. First, it can offer provable and certifiable top-$k$ robustness. That is, the top-$k$ important attributions of the interpretation map are provably robust under any input perturbation with bounded $\ell_d$-norm (for any $d\geq 1$, including $d = \infty$). Second, our proposed method offers $\sim10\%$ better experimental robustness than existing approaches in terms of the top-$k$ attributions. Remarkably, the accuracy of Renyi-Robust-Smooth also outperforms existing approaches. Third, our method can provide a smooth tradeoff between robustness and computational efficiency. Experimentally, its top-$k$ attributions are {\em twice} more robust than existing approaches when the computational resources are highly constrained.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.