Papers
Topics
Authors
Recent
Search
2000 character limit reached

EditSpeech: A Text Based Speech Editing System Using Partial Inference and Bidirectional Fusion

Published 4 Jul 2021 in eess.AS and cs.SD | (2107.01554v2)

Abstract: This paper presents the design, implementation and evaluation of a speech editing system, named EditSpeech, which allows a user to perform deletion, insertion and replacement of words in a given speech utterance, without causing audible degradation in speech quality and naturalness. The EditSpeech system is developed upon a neural text-to-speech (NTTS) synthesis framework. Partial inference and bidirectional fusion are proposed to effectively incorporate the contextual information related to the edited region and achieve smooth transition at both left and right boundaries. Distortion introduced to the unmodified parts of the utterance is alleviated. The EditSpeech system is developed and evaluated on English and Chinese in multi-speaker scenarios. Objective and subjective evaluation demonstrate that EditSpeech outperforms a few baseline systems in terms of low spectral distortion and preferred speech quality. Audio samples are available online for demonstration https://daxintan-cuhk.github.io/EditSpeech/ .

Citations (34)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.