Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven model predictive control: closed-loop guarantees and experimental results (2107.00966v1)

Published 2 Jul 2021 in eess.SY, cs.SY, and math.OC

Abstract: We provide a comprehensive review and practical implementation of a recently developed model predictive control (MPC) framework for controlling unknown systems using only measured data and no explicit model knowledge. Our approach relies on an implicit system parametrization from behavioral systems theory based on one measured input-output trajectory. The presented MPC schemes guarantee closed-loop stability for unknown linear time-invariant (LTI) systems, even if the data are affected by noise. Further, we extend this MPC framework to control unknown nonlinear systems by continuously updating the data-driven system representation using new measurements. The simple and intuitive applicability of our approach is demonstrated with a nonlinear four-tank system in simulation and in an experiment.

Citations (42)

Summary

We haven't generated a summary for this paper yet.