Oscillations in wave map systems and homogenization of the Einstein equations in symmetry (2107.00942v1)
Abstract: In 1989, Burnett conjectured that, under appropriate assumptions, the limit of highly oscillatory solutions to the Einstein vacuum equations is a solution of the Einstein--massless Vlasov system. In a recent breakthrough, Huneau--Luk (arXiv:1907.10743) gave a proof of the conjecture in U(1)-symmetry and elliptic gauge. They also require control on up to fourth order derivatives of the metric components. In this paper, we give a streamlined proof of a stronger result and, in the spirit of Burnett's original conjecture, we remove the need for control on higher derivatives. Our methods also apply to general wave map equations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.