Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 415 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Partial Identification and Inference in Duration Models with Endogenous Censoring (2107.00928v1)

Published 2 Jul 2021 in econ.EM and stat.ME

Abstract: This paper studies identification and inference in transformation models with endogenous censoring. Many kinds of duration models, such as the accelerated failure time model, proportional hazard model, and mixed proportional hazard model, can be viewed as transformation models. We allow the censoring of a duration outcome to be arbitrarily correlated with observed covariates and unobserved heterogeneity. We impose no parametric restrictions on either the transformation function or the distribution function of the unobserved heterogeneity. In this setting, we develop bounds on the regression parameters and the transformation function, which are characterized by conditional moment inequalities involving U-statistics. We provide inference methods for them by constructing an inference approach for conditional moment inequality models in which the sample analogs of moments are U-statistics. We apply the proposed inference methods to evaluate the effect of heart transplants on patients' survival time using data from the Stanford Heart Transplant Study.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.