Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Centrality and the KRH Invariant (2107.00267v2)

Published 1 Jul 2021 in math.GT and math.AT

Abstract: The purpose of this paper is to discuss the categorical structure for a method of defining quantum invariants of knots, links and three-manifolds. These invariants can be defined in terms of right integrals on certain Hopf algebras. We call such an invariant of 3-manifolds a Hennings invariant. The work reported in this paper has its background in previous work of the authors. The present paper gives an abstract description of these structures and shows how the Hopf algebraic image of a knot lies in the center of the corresponding Hopf algebra. The paper also shows how all the axiomatic properties of a quasi-triangular Hopf algebra are involved in the topology via a functor from the Tangle Category to the Diagrammatic Category of a Hopf Algebra. The invariants described in this paper generalize to invariants of rotational virtual knots. The contents of this paper are an update of the original 1998 version published in JKTR.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.